170 research outputs found

    A REAL-TIME TRAFFIC CONDITION ASSESSMENT AND PREDICTION FRAMEWORK USING VEHICLE-INFRASTRUCTURE INTEGRATION (VII) WITH COMPUTATIONAL INTELLIGENCE

    Get PDF
    This research developed a real-time traffic condition assessment and prediction framework using Vehicle-Infrastructure Integration (VII) with computational intelligence to improve the existing traffic surveillance system. Due to the prohibited expenses and complexity involved for the field experiment of such a system, this study adopted state-of-the-art simulation tools as an efficient alternative. This work developed an integrated traffic and communication simulation platform to facilitate the design and evaluation of a wide range of online traffic surveillance and management system in both traffic and communication domain. Using the integrated simulator, the author evaluated the performance of different combination of communication medium and architecture. This evaluation led to the development of a hybrid VII framework exemplified by hierarchical architecture, which is expected to eliminate single point failures, enhance scalability and easy integration of control functions for traffic condition assessment and prediction. In the proposed VII framework, the vehicle on-board equipments and roadside units (RSUs) work collaboratively, based on an intelligent paradigm known as \u27Support Vector Machine (SVM),\u27 to determine the occurrence and characteristics of an incident with the kinetics data generated by vehicles. In addition to incident detection, this research also integrated the computational intelligence paradigm called \u27Support Vector Regression (SVR)\u27 within the hybrid VII framework for improving the travel time prediction capabilities, and supporting on-line leaning functions to improve its performance over time. Two simulation models that fully implemented the functionalities of real-time traffic surveillance were developed on calibrated and validated simulation network for study sites in Greenville and Spartanburg, South Carolina. The simulation models\u27 encouraging performance on traffic condition assessment and prediction justifies further research on field experiment of such a system to address various research issues in the areas covered by this work, such as availability and accuracy of vehicle kinetic and maneuver data, reliability of wireless communication, maintenance of RSUs and wireless repeaters. The impact of this research will provide a reliable alternative to traditional traffic sensors to assess and predict the condition of the transportation system. The integrated simulation methodology and open source software will provide a tool for design and evaluation of any real-time traffic surveillance and management systems. Additionally, the developed VII simulation models will be made available for use by future researchers and designers of other similar VII systems. Future implementation of the research in the private and public sector will result in new VII related equipment in vehicles, greater control of traffic loading, faster incident detection, improved safety, mitigated congestion, and reduced emissions and fuel consumption

    Sintering Process and Its Mechanism of MgB2 Superconductors

    Get PDF

    Integrated Traffic and Communication Performance Evaluation of an Intelligent Vehicle Infrastructure Integration (VII) System for Online Travel Time Prediction

    Get PDF
    This paper presents a framework for online highway travel time prediction using traffic measurements that are likely to be available from Vehicle Infrastructure Integration (VII) systems, in which vehicle and infrastructure devices communicate to improve mobility and safety. In the proposed intelligent VII system, two artificial intelligence (AI) paradigms, namely Artificial Neural Networks (ANN) and Support Vector Regression (SVR), are used to determine future travel time based on such information as current travel time, VII-enabled vehicles’ flow and density. The development and performance evaluation of the VII-ANN and VII-SVR frameworks, in both of the traffic and communications domains, were conducted, using an integrated simulation platform, for a highway network in Greenville, South Carolina. Specifically, the simulation platform allows for implementing traffic surveillance and management methods in the traffic simulator PARAMICS, and for evaluating different communication protocols and network parameters in the communication network simulator, ns-2. The study’s findings reveal that the designed communications system was capable of supporting the travel time prediction functionality. They also demonstrate that the travel time prediction accuracy of the VII-AI framework was superior to a baseline instantaneous travel time prediction algorithm, with the VII-SVR model slightly outperforming the VII-ANN model. Moreover, the VII-AI framework was shown to be capable of performing reasonably well during non-recurrent congestion scenarios, which traditionally have challenged traffic sensor-based highway travel time prediction methods

    Endothelial Cell-Specific Molecule 2 (Ecsm2) Localizes To Cell-Cell Junctions And Modulates Bfgf-Directed Cell Migration Via The Erk-Fak Pathway

    Get PDF
    Background: Despite its first discovery by in silico cloning of novel endothelial cell-specific genes a decade ago, the biological functions of endothelial cell-specific molecule 2 (ECSM2) have only recently begun to be understood. Limited data suggest its involvement in cell migration and apoptosis. However, the underlying signaling mechanisms and novel functions of ECSM2 remain to be explored. Methodology/Principal Findings: A rabbit anti-ECSM2 monoclonal antibody (RabMAb) was generated and used to characterize the endogenous ECSM2 protein. Immunoblotting, immunoprecipitation, deglycosylation, immunostaining and confocal microscopy validated that endogenous ECSM2 is a plasma membrane glycoprotein preferentially expressed in vascular endothelial cells (ECs). Expression patterns of heterologously expressed and endogenous ECSM2 identified that ECSM2 was particularly concentrated at cell-cell contacts. Cell aggregation and transwell assays showed that ECSM2 promoted cell-cell adhesion and attenuated basic fibroblast growth factor (bFGF)-driven EC migration. Gain or loss of function assays by overexpression or knockdown of ECSM2 in ECs demonstrated that ECSM2 modulated bFGF-directed EC motility via the FGF receptor (FGFR)-extracellular regulated kinase (ERK)-focal adhesion kinase (FAK) pathway. The counterbalance between FAK tyrosine phosphorylation (activation) and ERK-dependent serine phosphorylation of FAK was critically involved. A model of how ECSM2 signals to impact bFGF/FGFR-driven EC migration was proposed. Conclusions/Significance: ECSM2 is likely a novel EC junctional protein. It can promote cell-cell adhesion and inhibit bFGF-mediated cell migration. Mechanistically, ECSM2 attenuates EC motility through the FGFR-ERK-FAK pathway. The findings suggest that ECSM2 could be a key player in coordinating receptor tyrosine kinase (RTK)-, integrin-, and EC junctional component-mediated signaling and may have important implications in disorders related to endothelial dysfunction and impaired EC junction signaling. © 2011 Shi et al

    Isolation and complete genomic characterization of H1N1 subtype swine influenza viruses in southern China through the 2009 pandemic

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The swine influenza (SI) is an infectious disease of swine and human. The novel swine-origin influenza A (H1N1) that emerged from April 2009 in Mexico spread rapidly and caused a human pandemic globally. To determine whether the tremendous virus had existed in or transmitted to pigs in southern China, eight H1N1 influenza strains were identified from pigs of Guangdong province during 2008-2009.</p> <p>Results</p> <p>Based on the homology and phylogenetic analyses of the nucleotide sequences of each gene segments, the isolates were confirmed to belong to the classical SI group, with HA, NP and NS most similar to 2009 human-like H1N1 influenza virus lineages. All of the eight strains were low pathogenic influenza viruses, had the same host range, and not sensitive to class of antiviral drugs.</p> <p>Conclusions</p> <p>This study provides the evidence that there is no 2009 H1N1-like virus emerged in southern China, but the importance of swine influenza virus surveillance in China should be given a high priority.</p
    • …
    corecore